突破叙事尺度 刻画极致人物 迷雾剧场《漂白》1月17日上线爱奇艺1月20日手机数码国补落地京东 超千万国补商品等你挑选超千万货品已备足 1月20日来京东购手机享国家补贴每件最高500元拥抱创新科技,探寻体育变革之路—— 第二届LALIGA EXTRATIME体育行业论坛在京成功举办斑马技术《2025全球消费者调查报告》:注重防损管理,增强顾客体验终端创企Nothing拟募资1亿美元 一加联合创始人创立恩智浦获欧洲投资银行 10 亿欧元贷款,用于在欧多国研发创新工作入手松下ZS99相机新品首选京东 售价2998元可先人一步入手1月20日打开京东搜索「1」 3C数码“疯狂星期一”爆款低至1元当代年轻人用上AI,从夸克开始消息称iPhone SE 4将有白色和黑色 预计3月份推出全球PC市场迎来温和复苏:2024年出货量增长1.3%,联想和苹果表现亮眼比亚迪已在韩国推出Atto 3 预计2月中旬开始交付发展新质生产力 赋能健康产品力 ——劲牌有限公司2024年度科技责任(成果)报告美光减产后 SK海力士也计划将上半年NAND闪存产量削减一成赵明离职信曝光:离开荣耀是人生中最艰难的决定消息称京东服饰换帅,阿里前高管担任负责人这年头,谁在互联网上学这么“硬核”的AI?开战2025,本地生活商家「另辟蹊径」年底Mini LED电视到底怎么选?认准这些新技术不踩雷!
  • 首页 > 云计算频道 > 大模型

    首个千亿生物医药ChatGPT来了!清华AIR聂再清:这个行业未来的“Killer APP”

    2023年09月22日 17:19:00   来源:微信公众号量子位

      本文来自于微信公众号 量子位 (ID:QbitAI),作者:萧萧 。

      制药行业的“专家版ChatGPT”,终于来了!

      就在这两天,首个生物医药的千亿参数大模型产品ChatDD发布,不仅制药各阶段知识“样样通”,还能和药学专家进行对话,瞬间秒懂一些行业神秘“黑话”。

    图片

      这和AlphaFold2直接加个Chat功能还不太一样——

      现阶段大模型虽然能在药物发现上做得不错,但要么只涉及单个模态,要么不具备直接对话能力。

      ChatDD则兼具多模态和对话双重特点,顺便还能给医药界学生“解个惑”。

      做出这个产品背后的水木分子,是今年6月新成立的一家公司。清华大学智能产业研究院院长张亚勤院士指出:

      ChatDD通过人机协作对话方式有效地将专家知识与大模型知识相联结,开拓了继传统药物研发TMDD、CADD、AIDD之后的第四代药物研发新模式。

      所以,它究竟在什么功能上做到“划时代”?

      我们和清华AIR教授、水木分子首席科学家聂再清聊了聊,详细了解了ChatDD的来龙去脉。ChatDD是一个什么样的产品?

      先来看看ChatDD能做哪些事儿,具体又能用在哪里。

      它的外观和ChatGPT有点像,是一个网页版,同样能通过对话来实现各种功能。

      对话能力上,不仅英文总结不错,中文对话也来得,直接hold住“疾病画像”这样的专业黑(术)话(语):

    图片

      如果有看不懂的分子,可以直接一键上传相关文件,让它来负责解读这种分子的作用:

    图片

      试试更复杂一点的任务,例如计算亲和力问题,大模型竟然直接“推荐”了一个工具,并快速计算出结果:

    图片

      此外,也不用担心问答内容超出ChatDD训练数据截止日期,毕竟它还学会了自己联网、或是从数据库中查找答案。

    图片

      总结来看,ChatDD虽然用法上像ChatGPT,但在生物医药这块是“专业的”。

      无论是掌握的多模态(小分子+大分子+文本)医药专业知识量,还是对行业的理解程度、完成任务的能力,ChatDD都要比ChatGPT“更像个学医药的人”。

      与同行AI不同的是,ChatDD的“业务范围”,涵盖了制药的前、中、后期三个阶段。

      此前的医药行业AI,即使是大模型,往往也只能用于制药的部分阶段,例如前期的药物发现,或是中期的临床前研究。占研发成本大部头的后期临床试验,几乎无人问津。

      而ChatDD不仅能参与药物发现、立项、商业智能(BI,Business Inteligence)、临床试验各环节,还能帮助提升成功率。

      聂再清介绍表示,ChatDD用于后期临床试验设计,也是大伙儿最期待的功能。

      首先,药物在临床试验阶段的通过率,往往并不高。

      尤其二期到三期临床,通过率只有34%,三期到四期通过率也不高。但临床试验加上前中期的费用往往又极高,一旦不通过,就是几亿美元成本“打水漂”。

      其次,药物通过率不高的原因,(除非药物本身不行)很大程度上是因为没找到适合“对症下药”的患者。

      药厂通常会从临床信息数据库中,筛选适合用药的病人。

      假设这个药物对数据库中5%的患者有效,那么从这5%的患者中挑选进行临床试验,肯定比剩下95%的患者有效率高。

      在综合各方面信息做判断这件事上,ChatDD往往比人类更适合筛选出“对症下药”的患者。

      聂再清特意举了一个例子,来表明ChatDD的能力:

    图片

      注意这里未来会是“私有化部署的合作伙伴的单细胞RNA测序数据”,现在因为没有,所以我们用了水木分子收集到的公开数据计算出来的。

      这样的ChatDD,背后功能究竟是怎么实现的? 医学院博士后负责数据构建

      ChatDD背后的底座,取名ChatDD-FM,参数量达到千亿级别。

      这次推出的ChatDD-FM-100B,是全球首个千亿参数多模态生物医药对话大模型,其在C- Eval评测中达到全部医学4项专业第一、也是唯一平均分超过90分的模型。

      联想到团队前不久发的BioMedGPT-10B,其自然语言模态的大模型同样基于LLaMA2架构,这二者是否有什么联系?

      聂再清表示,ChatDD-FM和BioMedGPT,在受众和用途上都不太一样,“有点像ChatGPT和GPT-3.5的区别,前者在对话和意图对齐能力上有更大提升”。

      BioMedGPT主要用于科研领域,更擅长英文生物医药科研任务,适合直接拿来作为生物医药领域的相关科研任务的基础模型。

      ChatDD-FM主要给国内医药行业“打辅助”,侧重中文对话能力,融入了更多专家的对话模式和经验。

      技术上,ChatDD-FM相比BioMedGPT,主要增强了三大方面,模态、训练数据和参数量级——

      模态上,增加了蛋白质结构数据;训练上,增加了用于中文、专家对话和调用工具能力的数据;参数量级上,从百亿增加到千亿。

      让ChatDD-FM提升“专业度”、说话像“行内人”的秘诀,依旧在于高质量数据上。

      这些数据主要分为两部分。

      第一部分,是预训练用的医药知识数据,主要目的是让ChatDD-FM提升专业素养,几个月内掌握行业知识。

      由于之前业内缺少相关(大小分子等多个模态和自然语言对齐)数据集、尤其是中文数据,所以团队又自己收集整理了一系列训练数据集。

      首先,和厂商合作翻译专业英文期刊、整理中文期刊,收集带有中文专业名词的大量数据,降低大模型没见过的专业词汇比率;

      然后,找来一批医学院博士和博士后,设计一套系统对这些数据进行整理,直到它们可以被喂给大模型使用。

      聂再清强调,这些博士不是在做数据标注,毕竟相比有监督学习,自监督学习更重要的是清洗、查找数据的工作:

      这些期刊数据当然不是一个人一篇一篇地看,那绝对不行,也不是一个字一个字敲进去,也肯定不行。

      毕竟大模型最主要的能力还是来源于自监督学习,所以更多是让他们进行数据清洗和查找的工作。

      当然,医药界期刊总是在更新,因此这部分的工作也会持续进行。

      第二部分,是“专家数据集”,专门用于提升ChatDD-FM的对话能力。

      ChatDD的用户,会有不少医药领域的专业用户,为了让它能无缝读懂业内人的“专言专语”,就必须要先了解专家们平时都会怎么说话。

      团队为此找了一些专家,“观察”他们平时是怎么提问的,根据这些问题整理了一套数据集,专门喂给ChatDD。

      这样医药专业的用户在使用时,不仅能像和同事聊天一样直接提问,也能选择“提示词模板”直接换词填充。

      此外,为了进一步增强模型解决实际医药任务的能力,团队也接入了不少实用工具和开源算法,解决用户遇到的问题,主要分为查询和计算两大类,如知识库查询工具、或靶点亲和力计算工具。

      但,ChatDD-FM作为大模型,总归绕不过幻觉这个问题。

      此前发布BioMedGPT时,聂再清就曾表示过不用害怕科研、药物发现等阶段的“幻觉”。现在发布商业版ChatDD-FM,是否还这么想?

      聂再清表示,现阶段ChatDD-FM可以根据不同的需求,调整大模型出现幻觉的情况。

      例如在做商业智能的时候,就尽可能降低大模型的幻觉,做到每一句话都有来源可追溯;

      但在做药物发现的时候,只要有实验人员把关,都可以去适当提升幻觉,增加一部分模型想象力来“换换思路”,或许能试出有意思的结果。

      后期,ChatDD-FM理论上甚至能做到“一键更改回答出现幻觉的比率”。

    图片

      “对制药行业有划时代意义”

      ChatDD背后的公司水木分子,目前已完成千万级种子轮融资。

      水木分子自定义为“大模型时代的CRO公司”,即利用大模型或AI技术,帮助别人更好更快地制药。

      公司的盈利方式目前有三种,包括ToB付费会员(按使用次数收费)、私有化部署和制药分成。

      已经有制药厂商找来合作了——复星医药计划对ChatDD进行私有化部署,用于辅助药物立项等阶段。

      药物立项,涉及大量资料查找和判断,包括查找有无药物相关(官能团、分子结构保护等)专利,还要根据大量文献和实时市场信息等资料判断是否值得立项。ChatDD能通过整合文献和相关专利,生成一个完整的参考报告。

      ChatDD的出现,聂再清认为对于行业而言有跨时代意义:

      它真正将专家的经验和直觉、以及大模型的“智力涌现”能力融会贯通了起来。

      此前,制药行业经历了三个阶段,分别是TMDD(Traditional Manual Drug Design)、CADD(Computer-Aided Drug Design)和AIDD(AI Drug Design)。

      但无论是人工试验,还是计算或AI辅助药物研发设计,都需要大量人力去“学会如何使用”模型,尚未出现一个能和科研人员直接对话的系统。

      现在,ChatDD的出现真正改变了这一现状。

      它不仅能将制药的知识经验集成到大模型中,通过提示词就能激发调用出来,还能通过学习专家对话方法掌握专业沟通能力,“相当于把人和机器最powerful的地方做了个融合。”

    图片

      不过,要完全实现ChatDD的全部潜能,真正进入比较成熟的阶段,聂再清认为至少还有10年的黄金时代。

      一方面,对于生物医药行业来说,人类对于蛋白质、细胞、小分子之类的理解也还远远不够,在这个学科方面仍然可以做出很多成绩和进展;

      另一方面,对AI行业来说,无论是数据还是算法,也都还没发展到足够成熟的阶段。

      数据上,目前生物医药领域内各模态和自然语言对齐的数据还很少。

      (就像图文一样,虽然文字和图像各自的数据很多,但图文对齐如VQA的数据却相对要少很多)

      对此依旧需要不断收集整理出PQA(蛋白质问答)、MQA(小分子问答)等模态的数据,来让多模态大模型的效果变得更好。

      模型上,大模型目前的效果还不是最好的,无论是单模态还是多模态,都值得继续去探索。

      所以,公司的下一步计划,就是继续优化模型、增加更多模态,并找到更多的场景落地需求。

      对于ChatDD最终形态的设想,聂再清表示:

      它会成为一个各模态(大小分子、蛋白质结构、DNA、单细胞等)和自然语言全部对齐的生物医药基础大模型产品。

      他也在发布会上预言,这个产品会成为生物医药行业的大模型“Killer APP”。

      到那时候,才会真正打破医药界的“双十定律”,高性价比的实现人机协作新药研发。

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。