• 首页 > 云计算频道 > 大模型

    DeepMind推出OPRO技术 可优化ChatGPT提示

    2023年11月21日 15:39:10   来源:站长之家

      在最新的AI研究报道中,Google DeepMind推出了一项名为“优化通过提示(OPRO)”的技术,将大型语言模型(LLM)作为其自身提示的优化器。该方法旨在通过自然语言描述问题,指导LLM生成和改进解决方案,从而提高提示性能。

      OPRO的工作方式相对简单,使用LLM作为优化器,但与使用数学公式不同,它采用自然语言描述优化问题,指导LLM迭代生成和改进解决方案。这对于提示优化等问题特别有用,因为在这些情况下,梯度不容易获取。

      该技术以“元提示”作为输入,由任务的自然语言描述以及一些问题和解决方案的示例组成。在优化过程中,LLM基于问题描述和元提示中的先前解决方案生成候选解决方案。然后,OPRO评估这些候选解决方案的结果,并将它们与其质量得分一起添加到元提示中。这个过程重复进行,直到模型不再提出具有改进得分的新解决方案。

      LLM作为优化器的一个关键优势是它们能够处理自然语言指令,这使用户能够描述优化任务而无需形式规范。例如,用户可以指定“准确性”等度量标准,同时提供其他指令,如要求模型提供简洁且普遍适用的解决方案。

      OPRO还充分利用了LLM对上下文模式的识别能力,通过在元提示中包含的示例来识别优化轨迹。这一方面是OPRO的核心魔力,因为LLM将语言视为数字令牌,可以发现人类观察不到的模式。

      DeepMind在线性回归和“旅行推销员问题”等两个著名的数学优化问题上测试了OPRO,并展示了在这些情况下的有望结果。然而,OPRO的真正潜力在于优化LLM的使用,如ChatGPT和PaLM。

      DeepMind的研究显示,OPRO可以引导LLM优化其自身提示,即找到最大化特定任务响应准确性的提示。例如,为了发现解决词数学问题的最佳提示,一个“优化器LLM”被给予一个包含指令和示例的元提示,其中包含优化提示的占位符。模型生成一组不同的优化提示,并将它们传递给一个“评分LLM”,该LLM在问题示例上测试它们并评估结果。最佳提示及其分数被添加到元提示的开头,然后重复这个过程。

      研究人员使用PaLM和GPT系列的多个LLM对该技术进行了评估,根据实验,所有模型都能通过迭代优化提高生成提示的性能。

      虽然DeepMind尚未发布OPRO的代码,但该技术的概念直观且简单,可以在几小时内创建一个自定义实现。这里分享一个由LlamaIndex制作的使用OPRO增强LLM在检索增强生成(RAG)任务上性能的逐步指南感兴趣的可以访问阅读。

      OPRO是利用LLM优化其性能的多种技术之一,这一领域正在积极探索各种主题,包括越狱和红队行动,研究人员正在不断释放大型语言模型的全部潜力。

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。