微软研究发布了名为 LLMLingua-2的模型,用于任务不可知的提示压缩。该模型通过智能地去除长提示中的不必要词语或标记,同时保留关键信息,使得提示长度可减少至原长度的20%,从而降低成本和延迟。研究团队写道:“自然语言存在冗余,信息量不尽相同。”
LLMLingua-2比其前身 LLMLingua 和类似方法快3到6倍。LLMLingua-2使用了 MeetingBank 中的示例进行训练,该数据集包含会议记录及其摘要。要对文本进行压缩,首先将原始文本输入训练好的模型。模型对每个词语进行评分,根据周围语境为其分配保留或移除的点数。然后选择具有最高保留值的词语,以创建缩短的提示。
微软研究团队在多个数据集上对 LLMLingua-2进行了评估,包括 MeetingBank、LongBench、ZeroScrolls、GSM8K 和 BBH。尽管模型规模较小,但在各种语言任务(如问答、摘要和逻辑推理)中,它始终优于原始的 LLMLingua 和选择性上下文策略。同样,相同的压缩策略对不同 LLM(从 GPT-3.5到 Mistral-7B)和语言(从英语到中文)都有效。
LLMLingua-2只需两行代码就可以实现。该模型还已集成到广泛使用的 RAG 框架 LangChain 和 LlamaIndex 中。微软提供了演示、实际应用示例以及说明提示压缩的好处和成本节省的脚本。该公司认为这是一个有前途的方法,可以通过压缩提示实现更好的泛化能力和效率。
文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。
奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。
“以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。
华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。