突破叙事尺度 刻画极致人物 迷雾剧场《漂白》1月17日上线爱奇艺1月20日手机数码国补落地京东 超千万国补商品等你挑选超千万货品已备足 1月20日来京东购手机享国家补贴每件最高500元拥抱创新科技,探寻体育变革之路—— 第二届LALIGA EXTRATIME体育行业论坛在京成功举办斑马技术《2025全球消费者调查报告》:注重防损管理,增强顾客体验终端创企Nothing拟募资1亿美元 一加联合创始人创立恩智浦获欧洲投资银行 10 亿欧元贷款,用于在欧多国研发创新工作入手松下ZS99相机新品首选京东 售价2998元可先人一步入手1月20日打开京东搜索「1」 3C数码“疯狂星期一”爆款低至1元当代年轻人用上AI,从夸克开始消息称iPhone SE 4将有白色和黑色 预计3月份推出全球PC市场迎来温和复苏:2024年出货量增长1.3%,联想和苹果表现亮眼比亚迪已在韩国推出Atto 3 预计2月中旬开始交付发展新质生产力 赋能健康产品力 ——劲牌有限公司2024年度科技责任(成果)报告美光减产后 SK海力士也计划将上半年NAND闪存产量削减一成赵明离职信曝光:离开荣耀是人生中最艰难的决定消息称京东服饰换帅,阿里前高管担任负责人这年头,谁在互联网上学这么“硬核”的AI?开战2025,本地生活商家「另辟蹊径」年底Mini LED电视到底怎么选?认准这些新技术不踩雷!
  • 首页 > 云计算频道 > 大模型

    OpenAI o1式思维链,开源模型也可以有,成功案例来了

    2024年09月18日 09:40:20   来源:机器之心公众号

      北京时间9月13日午夜,OpenAI 发布了推理性能强大的 ο1系列模型。之后,各路研究者一直在尝试挖掘 ο1卓越性能背后的技术并尝试复现它。当然,OpenAI 也想了一些方法来抑制窥探,比如有多名用户声称曾试图诱导 ο1模型公布其思维过程,然后收到了 OpenAI 的封号威胁。

      尽管如此,不过三四天时间,就已经有研究者宣称已经成功复现/开发出了与 ο1性能差不多的推理技术,并且还不止一个!

      Llamaberry:教会 AI 像聪明人一样思考

      Llamaberry 的提出者是 Martin Bowling。他开发的项目包括 RAGMiner.dev 和 Replit;其中前者可以帮助用户毫不费力地将网站转换成 Markdown、XML 或 JSON 等格式以便 RAG 和 LLM 应用使用,而后者则是一个使用 AI 将想法变成代码的项目。

      Llamaberry 的核心思路是使用思维链(CoT)来实现推理。这个名字自然源自代表 o1模型的 Strawberry(草莓)。

      HuggingFace地址:https://huggingface.co/spaces/martinbowling/Llamaberry

      什么是思维链?Bowling 在博客中打了个比方:「思维链推理就像是给 AI 一个笔记本来展示其工作过程。其中不仅仅是简单地给出答案,而是会带领我们经历其思维过程。」

      Llamaberry 能教会 AI 透彻地思考,就像是一位人类专家攻克难题时那样。

      具体来说,Llamaberry 是一个多轮思维链推理系统的实现,其基于运行在 Groq 上的 Llama3.170B 模型。

      多轮推理是关键

      多轮推理,顾名思义,就是让模型在给出答案之前进行多步思考,而不是一步给出答案。打个比方,这就像是看一位大厨从备菜到完成摆盘一步步地完成一道精美菜肴,而不是直接微波加热预制菜。

      举个示例:

      第1轮:AI 先尝试解决当前问题。

      第2轮:AI 回顾第一次尝试并尽力改进或优化其思维过程。

      第3轮:再进行一轮反思和改进。

      综合结果:最后,将所有这些思考综合到一起,得到一个连贯且合理的答案。

      下面展示了这个多轮过程的示意图:

      可以看到,前一轮的输出会成为后一轮的输入,从而让 AI 可在每个阶段不断完善其思维。最后,所有这些思考会凝练成一个合理的最终答案。就像看着一枚莓果逐渐成熟!

      如何实现

      下面将深入 Llamaberry 的实现细节。

      1.设置舞台

      首先,我们需要为 AI 助手设置一些基本规则,代码如下:

      initial_system_prompt="""YouareanAIassistantcapableofdetailed,step-by-stepthinking.Whenpresentedwithaquestionorproblem,breakdownyourthoughtprocessintoclear,logicalsteps.Foreachstep,explainyourreasoning.Concludewithafinalanswer.Usethefollowingmarkdownstructure:

      这就是提供给 AI 大厨的菜谱。它知道需要逐步分解其思考过程并解释每个步骤,并且以 Markdown 格式将它们显示出来。

      2.思考过程

      在每一轮推理中,都需要让 AI 对问题进行思考。但在第一轮结束后,还需要求它思考之前已经思考过的东西。这就像问朋友,「嘿,还记得你之前说过什么吗?让我们再想一想。」

      下面是每一轮的生成方式:

      asyncdefgenerate_turn(query:str,previous_turns:list=None)->str:

      该函数是多轮推理的核心。它决定我们是在第一轮还是在后续轮,并以此构建提示词。对于后续轮,它会将之前所有推理轮都包含在上下文中,让 AI 可以基于之前的思考进行构建。

      3.综合结果

      经过三轮思考之后,再让 AI 检视其所有思考并得出一个合理的最终答案。这就像是让专家讨论问题,然后编写最终报告。

      asyncdefsynthesize_turns(query:str,turns:list)->str:turns_text="\n\n".join([f"Turn{i+1}:\n{turn}"fori,turninenumerate(turns)])messages=[{"role":"system","content":synthesis_prompt},{"role":"user","content":f"OriginalQuery:{query}\n\nTurnsofReasoning:\n{turns_text}"}]returnawaitcall_llm(messages)

      这个综合步骤至关重要,是 AI 综合所有思考内容凝练出最终答案的一步。

      单轮推理 vs 多轮推理

      Martin Bowling 在其博客中简单比较了单轮和多轮推理。

      这里他采用了一个简单示例,即询问 AI:「人工智能对就业市场有什么潜在影响?」

      单轮推理:

      AI:Artificialintelligencewilllikelyhavesignificantimpactsonthejobmarket,including:

      使用 Llamaberry 执行多轮推理:

      第1轮:

      AI:Let'sapproachthisstep-by-step:

      第2轮:

      AI:Let'srefineourthinking:

      第3轮:

      AI:Let'sdelvedeeper:

      综合答案:

      AI:Aftercarefulconsiderationacrossmultipleturnsofreasoning,wecansynthesizeourthoughtsonthepotentialimpactsofartificialintelligenceonthejobmarket:

      可以看到,多轮方法能实现更加精细、全面的分析。这能从多个角度考虑问题,优化其思考,最后得到更加深思熟虑和全面详细的答案。

      Bowling 表示,这样的多轮推理在思考深度、自我提升、透明度、灵活性等方面都有巨大优势,同时其还采用了 Markdown 格式,使其结果更容易阅读和用于后续流程。

      因此,这种技术可让 AI 进入更多实际应用场景,比如医疗诊断、法律分析、科学研究、商业策略、教育。当然,在使用 Llamaberry 等多轮推理系统时,也需要注意它们的局限和潜在的道德伦理问题,比如偏见、计算成本、过度依赖和隐私问题。

      如何使用 Llamaberry?

      Llamaberry 也很容易使用,点击几下就能拥有你自己的多轮推理系统。步骤如下:

      前往 Replit,点击该链接获取 Llamaberry 模板:https://replit.com/@MartinBowling/Llamaberry-Powered-By-Groq?v=1

      创建模板分支:点击 Fork 按钮创建你自己的 Llamaberry 项目副本。

      获取你的 Groq API Key:注册 Groq 账户,获取 API Key。

      设置环境:在你的分支 Replit 项目中,找到「Secrets」选项卡。添加一个新密钥,密钥为 GROQ_API_KEY,值是你的 Groq API 密钥。

      运行项目:单击 Replit 界面顶部的 Run 按钮。这将启动 Llamaberry 应用。

      开始实验:应用运行起来后,你将看到一个 Gradio 界面。你可以在其中输入问题并查看 Llamaberry 多轮推理的实际效果!并且输出是简洁漂亮的 Markdown 格式!

      了解了 Llamaberry,下面来看另一个号称实现了类 o1推理链的项目:g1。

      g1:实现类似 ο1的推理链

      g1这个项目来自 Benjamin Klieger,他是 Groq 的一位研究者。也因此,g1同样基于 Groq,并且其也使用了 Llama3.170b 模型。

      不同于 Llamaberry 使用的多轮思维链推理,g1的策略是角色扮演、思维链提示 、格式化以及另一些提示技巧。并且,g1开源了。

      开发者宣称 g1有70% 的时间能成功数出 Strawberry 中有多少个 R,同时无需任何微调或少样本技术。下面是其一次执行过程:

      开发者 Klieger 表示,g1和 ο1一样能让 LLM 有能力「思考」和解决之前的领先模型难以应对的逻辑问题。但不同之处在于,g1会大方地展示所有推理 token。同时,他也强调了 g1和 ο1在技术上的差异,其中后者使用了大规模强化学习来执行思维链推理。而 g1则是通过发掘提示词工程的潜力来帮助 LLM 解决简单的逻辑问题,让现有的开源模型也能受益于动态推理链和优化般的探索界面。

      g1的工作方式

      由 Llama3.170b 支持的 g1会创建一种动态的思维链。

      在每个步骤中,LLM 可以选择是继续进行另一个推理步骤,还是提供最终答案。每个步骤都有标题,并且对用户可见。

      系统提示词中还会包含给 LLM 的提示。其提示策略如下:

      YouareanexpertAIassistantthatexplainsyourreasoningstepbystep.Foreachstep,provideatitlethatdescribeswhatyou'redoinginthatstep,alongwiththecontent.Decideifyouneedanothersteporifyou'rereadytogivethefinalanswer.RespondinJSONformatwith'title','content',and'next_action'(either'continue'or'final_answer')keys.USEASMANYREASONINGSTEPSASPOSSIBLE.ATLEAST3.BEAWAREOFYOURLIMITATIONSASANLLMANDWHATYOUCANANDCANNOTDO.INYOURREASONING,INCLUDEEXPLORATIONOFALTERNATIVEANSWERS.CONSIDERYOUMAYBEWRONG,ANDIFYOUAREWRONGINYOURREASONING,WHEREITWOULDBE.FULLYTESTALLOTHERPOSSIBILITIES.YOUCANBEWRONG.WHENYOUSAYYOUARERE-EXAMINING,ACTUALLYRE-EXAMINE,ANDUSEANOTHERAPPROACHTODOSO.DONOTJUSTSAYYOUARERE-EXAMINING.USEATLEAST3METHO***ODERIVETHEANSWER.USEBESTPRACTICES.

      对这些提示词的详细解释请参阅原项目的 Prompt Breakdown 一节。这里就不赘述了,仅给出几个示例,比如可以在提示词中加入「include exploration of alternative answers」(探索其它答案)和「use at least3methods to derive the answer」(使用至少三种方法来得出答案)。

      这样一来,通过组合思维链以及尝试多种方法、探索其它答案、质疑之前草拟的解答、考虑 LLM 的局限性等策略,就能显著提升 LLM 的推理能力。

      在数 Strawberry 中有多少个 R 这个经典问题上,无需任何训练,g1就能帮助 Llama3.170b 达到约70% 的准确度(n=10, How many Rs are in strawberry?)。而如果不使用提示技术,Llama3.170b 的准确率为0%,ChatGPT-4o 的也只有30%。

      下面展示了另一个示例:0.9和0.11哪个更大?

      详细的安装过程和代码请参阅原项目。

      最后,顺便一提,另有开发者发布了 g1的分支版 Mult1,该版本的一大改进是可使用多个 AI 提供商来创建类似 o1的推理链

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。