• 首页 > 云计算频道 > 大模型

    清华与微软联手打造Differential Transformer,让AI的注意力更集中,精度飙升30%!

    2024年10月10日 20:15:32   来源:AIbase基地

      最近大语言模型(LLM)发展迅猛,其中Transformer模型功不可没。Transformer的核心是注意力机制,它像一个信息过滤器,让模型关注句子中最重要的部分。但即使是强大的Transformer,也会被无关信息干扰,就好比你在图书馆想找本书,结果被一堆无关的书淹没,效率自然低下。

      这种注意力机制产生的无关信息,在论文中被称为注意力噪音。想象一下,你想在文件中找一个关键信息,结果Transformer模型的注意力却分散到各种无关的地方,就像一个近视眼,看不清重点。

      为了解决这个问题,这篇论文提出了Differential Transformer (DIFF Transformer)。这个名字很高级,但原理其实很简单,就像降噪耳机一样,通过两个信号的差异来消除噪音。

      Differential Transformer 的核心是差分注意力机制。它把查询和键向量分成两组,分别计算两个注意力图,再将这两个图相减,得到最终的注意力分数。这个过程就像用两台相机分别拍摄同一个物体,然后将两张照片叠加,差异的地方就会凸显出来。

      通过这种方式,Differential Transformer 能够有效地消除注意力噪音,让模型更加专注于关键信息。就好比你戴上降噪耳机,周围的噪音消失了,你就能更清晰地听到想要的声音。

      论文中进行了一系列实验,证明了Differential Transformer 的优越性。首先,它在语言建模方面表现出色,只需要Transformer65% 的模型大小或训练数据,就能达到类似的效果。

      其次,Differential Transformer 在长文本建模方面也更胜一筹,能够有效地利用更长的上下文信息。

      更重要的是,Differential Transformer 在关键信息检索、减少模型幻觉和上下文学习方面表现出显著优势。

      在关键信息检索方面,Differential Transformer 就像一个精准的搜索引擎,能够在海量信息中准确地找到你想要的内容,即使是在信息极其复杂的场景下,也能保持高准确率。

      在减少模型幻觉方面,Differential Transformer 能够有效地避免模型“胡说八道”,生成更准确、更可靠的文本摘要和问答结果。

      在上下文学习方面,Differential Transformer 更像是学霸,能够快速地从少量样本中学习新知识,而且学习效果也更加稳定,不像Transformer那样容易受到样本顺序的影响。

      此外,Differential Transformer 还能有效地降低模型激活值中的异常值,这意味着它对模型量化更友好,可以实现更低比特的量化,从而提高模型的效率。

      总而言之,Differential Transformer 通过差分注意力机制有效地解决了Transformer模型的注意力噪音问题,并在多个方面取得了显著的改进。它为大语言模型的发展提供了新的思路,未来将会在更多领域发挥重要作用。

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。