• 首页 > 3C消费频道 > 大型家电

    北大等发布多模态版o1!首个慢思考VLM将开源,视觉推理超越闭源模型

    2024年11月19日 14:16:05   来源:量子位公众号

      北大等出品,首个多模态版o1开源模型来了——

      代号LLaVA-o1,基于Llama-3.2-Vision模型打造,超越传统思维链提示,实现自主“慢思考”推理。

      在多模态推理基准测试中,LLaVA-o1超越其基础模型8.9%,并在性能上超越了一众开闭源模型。

      新模型具体如何推理,直接上实例,比如问题是:

      减去所有的小亮球和紫色物体,剩下多少个物体?选项:A.4,B.8,C.2,D.6

      传统提示词方法还是老路子,让Llama-3.2-11B-Vision-Instruct打个样就是:

      第一步减去所有的小亮球;

      第二步减去所有紫色物体;

      最后给出答案,鉴于我们已经移除了所有的小亮球,而且一开始就没有紫色物体,正确答案是C.2;

      哐哐一顿输出,得出错误结果。

      我们再来看LLaVA-o1的推理过程:

      总结阶段:问题是什么?我应该怎么做?

      注释阶段:我能从这张图片中知道什么?

      推理阶段:如何一步一步解决问题?

      结论阶段:最终答案是什么?

      是不是明显不同。这就对了,LLaVA-o1超越传统COT思维链,采用了结构化、多步骤推理。

      简单说,它将推理过程划分为四个阶段,并在每一阶段采用优中选优策略来为下一阶段提供响应。

      难怪看完最新效果,网友们直呼:推理 is all you need!

      看来,让模型思考更多在多模态领域也同样适用——

      “第一个能自发、系统推理的视觉语言模型”

      前一阵,o1模型的发布又带火了COT思维链这一推理模式。(像人类一样步步思考)

      于是,让模型思考更多是否会提高模型能力成为新的研究热点。

      这不,除了像o1这样的通用大语言模型,北大团队还瞄上了多模态这一领域——

      他们超越传统COT思维链,采用结构化、多步骤推理,一举推出多模态版o1模型——LLaVA-o1。

      作者先澄清了一下, 虽然最近的VLM模型有类似名称,但LLaVA-o1是建立在Llama-3.2-Vision模型之上,而不是LLaVA。

      那么,学会逐步推理的LLaVA-o1有多大提升呢?

      根据论文介绍,仅用一个包含10万训练样本的数据集,LLaVA-o1在多模态推理基准测试中超越了其基础模型8.9%,并且在性能上超越了更大的模型。

      甚至包括一些闭源模型,如Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。

      针对这一提升,团队也发现了背后的关键原因:

      结构化响应显著提高了模型的系统推理能力

      为了使LLaVA-o1更加结构化和系统化,团队设计了4个标签来帮助模型识别当前的推理阶段,并使用GPT-4o来生成LLaVA-o1-100k数据集。

      <摘要>:该模型简要解释了接下来的任务

      <标题>:它描述了图像中的重要细节(如果有)

      <理由>:它详细分析了这个问题

      <结论>:它基于分析提供最终答案

      借助这些标签,LLaVA-o1将推理过程划分为四个明确的阶段:总结(Summary)、视觉解释(Caption)、逻辑推理(Reasoning)和结论生成(Conclusion)。

      与思维链提示不同,LLaVA-o1独立参与了这些连续阶段。

      不过需要提醒,在LLaVA-o1的推理过程中,前三个阶段都在内部处理(对用户隐藏),而最终结论阶段才是用户可以看到并直接与之交互的。

      采用这种设计,可以使模型在不向用户暴露复杂推理细节的情况下,提供清晰和准确的答案。

      接下来,LLaVA-o1通过监督微调和阶段级光束搜索方法(stage-level beam search method)来进一步提升推理能力和推理时间的可扩展性。

      这里我们重点说一下团队创新提出的阶段级光束搜索方法

      简单说,团队为每个阶段(用标签标记)生成多个响应,并选择其中最佳的一个进入下一阶段。

      更具体的,这是一种用于推理时间扩展(Inference-time scaling)的技术,与传统方法不同,阶段级光束搜索专注于模型推理过程中的每个独立阶段。

      在这种方法中,模型在每个推理阶段生成多个候选结果,然后从中选择最佳的结果继续下一个阶段的推理。

      由于它允许模型在每个阶段进行选择和优化,从而提高了整体推理的质量。

      通过这种分阶段的搜索策略,LLaVA-o1能够更有效地进行推理,尤其是在处理复杂的多模态推理任务时。

      最后,通过对Llama-3.2-11B-Vision-Instruct模型的微调,结果显示:

      LLaVA-o1在多模态推理基准测试上使用10万个训练样本和简单的推理时间扩展方法,实现了8.9%的性能提升,超越了同等规模以及更大或闭源的模型。

      北大、鹏城实验室等团队出品

      简单认识一下研究背后的团队,论文作者一共6人,下面一一介绍。

      Guowei Xu,目前本科就读于清华姚班,对强化学习、机器人和科学领域的AI应用感兴趣。

      去年入学以来,他已在国际学术会议上参与发表多篇论文,并获得2024新生一等奖。

      Peng Jin(金鹏),曾在清华大学获得学士学位,目前是北大三年级博士生,师从袁粒。

      他对文本-视频检索、跨模态表示学习以及多模态大语言模型感兴趣,从2022年9月至今,已有11篇论文被顶会接收。

      和他同样北大博三,师从袁粒的,还有Hao Li(李昊),不过李昊之前毕业于北大计算机科学系。

      李昊对多模态学习、视觉理解和化学科学人工智能感兴趣,至今已在国际顶会上发表了20多篇论文,总谷歌学术引用量300+。

      而他们的老师袁粒,量子位的读者想必都很熟悉了。

      袁粒目前是北大深圳研究生院助理教授,专注于多模态深度学习研究方向,一作论文单篇被引用千余次。

      屡屡登上热搜的ChatExcel、ChatLaw等垂直领域产品,都是出自他的团队。

      另外两位作者:

      Yibing Song(宋奕兵),目前是阿里达摩院研究员/研究经理,之前还是复旦大学的一名教师,并在腾讯AI实验室担任高级研究员。

      他当前主要对多模态AI感兴趣,至今发表了50多篇顶级论文,而且被斯坦福大学选为全球前2%的科学家之一。

      Lichao Sun,目前是美国莱赫大学计算机科学与工程系助理教授。

      在此之前,他于2020年在伊利诺伊大学芝加哥分校获得计算机科学博士学位。

      他还是多项奖项的获得者,包括2024年微软加速基础模型研究奖、2024年OpenAI研究员奖和NSF CRII奖。

      接下来,团队宣布LLaVA-o1的代码、预训练权重、数据集等即将全部开源。

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    即时

    唯品会双11销量前十品牌中有7个国货品牌

    11月11日,据网经社数字零售台(DR.100EC.CN)数据显示,秋冬服饰仍是双11的C位,女士针织衫、女士外套、女士羽绒服等位居服饰消费前列,女士夹克销量同比增长72%,女士棉衣、女士羊毛衫销量同比增长50%以上。男士外套销量同比增长30%以上。

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。