毕尔巴鄂对阵皇家社会:两支近邻球队将于西甲联赛 “巴斯克德比”中为捍卫荣耀而战贝壳第三季度营收226亿元 经调净利润17.8 亿元 同比下降17.46%AI营销,让科技巨头尝到了大模型商业化的甜头安恒信息范渊在乌镇峰会谈AI:以工具视之、以工具用之、以工具治理之诺基亚与微软再合作,为 Azure 数据中心供货延长五年天岳先进发布业界首款 300mm(12 英寸)N 型碳化硅衬底三星介绍内部安全团队 Project Infinity 攻防演练项目,高效修复 Galaxy 手机平板漏洞上海市将推进低空飞行服务管理能力建设,2027 年底前累计划设相应航线不少于 400 条岁末,海尔给您备好一套“小红花”为什么说Q10K Pro是今年最值得入手的电视?看完这几点就明白了!“小墨方·大不凡”!Brother“小墨方”系列彩喷一体机全新上市黄仁勋:AI智能需求强劲,“物理定律”限制英伟达芯片增长诺基亚与微软再合作,为Azure数据中心供货延长五年国家数据局:到2029年基本建成国家数据基础设施主体结构中国已发展成为全球最大的互联网市场,拥有全球最多的网民和移动互联网用户中国铁塔:计划按照10:1的比例合股美国FCC正式划定5.9GHz频段用于C-V2X技术在AI领域奋起直追!苹果要对Siri大革新 2026年正式发布日本机构公布量子专利榜单:本源量子、国盾量子位居全球第1中国联通:拟向华为、中兴展开5G网络设备竞争性谈判采购
  • 首页 > 延展阅读 > 2017归档

    健康有益:一张图看懂AI与大数据

    2018年02月07日 16:49:02   来源:中文科技资讯

      近几年随着AlphaGO的骄人战绩,人工智能和大数据备受追捧,热度空前。而在实际接触中,大家对人工智能和大数据的认知普遍是“只知其名不知其意”,因此对企业而言,猎头的推荐也往往与岗位匹配度不高。那么被人们认为高深莫测的AI和大数据的关系究竟是怎样的? 下图清晰表达了其逻辑及关联性。

      上图中主要是三大块内容,分别是大数据,AI技术和解决问题,他们的关系如下:

      -大数据层 -

      主要分为数据采集、数据存储及数据访问三个步骤。

      • 数据采集

      主要通过智能手环、智能手表、智能手机等各类智能硬件,重力传感器、温度传感器、湿度传感器等各类传感器以及摄像头、话筒等多种手段来采集各种所需数据。

      • 数据存储

      主要是将采集数据存储到数据库中。大数据的存储方式与传统的数据存储有很大不同。主要体现在存储格式、存储结构、以及分布式存储等方面。而分布式存储、共享存储则是数据存储中重要的核心技术。

      • 数据访问

      主要解决如何让AI技术层能够快速的获取所需数据。该层是大数据技术与AI技术的重要承接层,其最核心的技术为负载均衡。该技术解决了数据访问中的大数据并发、网络负荷过重等问题。

      - AI技术层 -

      分为基础算法、AI算法、AI框架和AI技术四个步骤,目的是获取数据之后,利用人工智能的算法和技术对数据进行分析。

      • 基础算法层

      基础算法层主要包含高等数学、矩阵分析、数值分析、概率统计分析等,是AI算法的奠基层。而AI算法来自于基础算法的支撑。我们对基础算法理解越深刻,对AI算法理解的也会更透彻。好像盖大楼的地基,地基打的越深,大楼才能盖的越高。

      • AI算法层

      AI算法层是在基础算法层之上构建的解决人类问题的人工智能算法层。

      人类遇到的问题通常是由单一问题合并组成的复杂问题,解决问题的路径为将复杂问题拆解成多个单一问题后逐一进行解决。AI算法层即解决单一问题的通用方法层。比如拍照计算食物热量实际上包含食物识别、体积计算、质量计算、热量计算等四个子问题,而四个子问题则由各自组成的通用方法来解决。经过长达半个多世纪的发展,AI算法层已经研究出了一些通用方法即算法,包含分类算法、聚类算法、回归算法、优化算法、降维算法、深度学习算法等等。

      • AI框架层

      AI框架主要是对AI算法层的单个算法进行重新封装,它定义了很多类、方法、接口,使用者只需要调整相关参数即可实现算法,而不需要将算法完全实现出来,这样节省了大量的时间,使得应用算法来解决问题的AI研发人员更加专注于解决问题本身。目前常见的分类、聚类等传统的人工智能算法框架有SkLearn、Pandas等等,深度学习框架有Tensorflow、Caffe、Torch、PaddlePaddle。

      • AI技术层

      AI技术层主要是针对利用AI算法解决专业领域问题而提出的专用方法和算法。这种算法不具有通用性,是为解决某个领域的问题而定制研发的方法。目前AI技术主要包含自然语言处理(NLP)、机器视觉、语音识别、知识图谱、数据挖掘、分析决策。大家耳熟能详的技术都出自该层,也是AI技术层的最顶层。

      • 自然语言处理(NLP)

      自然语言处理领域主要是语义识别,开放域对话聊天,基于任务的对话,自动翻译(例如中翻英,英翻中)等。

      • 机器视觉

      机器视觉主要分为图像识别(识别图像或视频中的物体是什么),图像跟踪(视频中跟踪某个物体),三维重建(通过2D图片进行3D物体的构建)。

      • 语音识别

      该技术通俗的讲就是对人说的话转化成文字。

      • 知识图谱

      该技术是用来构建知识的网状结构,将一个个看似没有关系的知识点,通过该技术建立他们之间的关联关系,比如包含关系、并列关系、最终构建各个领域的知识网。然后再根据这个知识网解决用户的问答、推荐、预测、推理等问题。

      • 数据挖掘

      数据挖掘主要是对数据进行分类、聚类、预测等处理。

      • 分析决策

      主要是做策略制定,通过多维度收集的数据进行某个领域的决策并给出答案。

      -解决问题 -

      基于大数据与AI技术的结合,能够真正实现为人类解决各种各样的问题。将这些问题进行归类汇总成几大类问题,常见的有聚类、分类、预测、推荐等问题。

      • 分类问题

      分类问题主要是判别某个物体属于哪个类别,比如橘子属于水果类、白菜属于蔬菜类。分类又分为二分类、多分类问题;二分类即是与不是的问题,比如这个物体不是香蕉,这个物体是香蕉;多分类问题,比如多种食物,一种食物是蔬菜,一种食物是水果,一种食物是肉。

      • 聚类问题

      聚类问题主要是将一批数据自动分成几类,比如说网站的用户群,自动分为活跃用户群、忠诚用户群、沉默用户群,这种用户群的确定是通过人工智能算法算的,而不是通过人工筛选的。

      • 预测问题

      预测问题主要是对某个趋势进行预测,比如房价趋势预测、网站的流量预测等等。

      • 推荐问题

      推荐问题主要是推荐同类偏好。比如A用户喜欢旅游,且是户外爱好者,而户外爱好者除了喜欢旅游,还喜欢户外装备,那就可以向A用户推荐户外装备,这就是典型的网站推荐逻辑。

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    [编号: ]
    分享到微信

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。