突破叙事尺度 刻画极致人物 迷雾剧场《漂白》1月17日上线爱奇艺1月20日手机数码国补落地京东 超千万国补商品等你挑选超千万货品已备足 1月20日来京东购手机享国家补贴每件最高500元拥抱创新科技,探寻体育变革之路—— 第二届LALIGA EXTRATIME体育行业论坛在京成功举办斑马技术《2025全球消费者调查报告》:注重防损管理,增强顾客体验终端创企Nothing拟募资1亿美元 一加联合创始人创立恩智浦获欧洲投资银行 10 亿欧元贷款,用于在欧多国研发创新工作入手松下ZS99相机新品首选京东 售价2998元可先人一步入手1月20日打开京东搜索「1」 3C数码“疯狂星期一”爆款低至1元当代年轻人用上AI,从夸克开始消息称iPhone SE 4将有白色和黑色 预计3月份推出全球PC市场迎来温和复苏:2024年出货量增长1.3%,联想和苹果表现亮眼比亚迪已在韩国推出Atto 3 预计2月中旬开始交付发展新质生产力 赋能健康产品力 ——劲牌有限公司2024年度科技责任(成果)报告美光减产后 SK海力士也计划将上半年NAND闪存产量削减一成赵明离职信曝光:离开荣耀是人生中最艰难的决定消息称京东服饰换帅,阿里前高管担任负责人这年头,谁在互联网上学这么“硬核”的AI?开战2025,本地生活商家「另辟蹊径」年底Mini LED电视到底怎么选?认准这些新技术不踩雷!
  • 首页 > 企业IT频道 > 数字化

    网易严选DMP标签系统建设实践

    2022年08月16日 10:02:39   来源:IT168

      导读:如果说互联网的上半场是粗狂运营,因为有流量红利不需要考虑细节。那么在下半场,精细化运营将是长久的主题,有数据分析能力才能让用户得到更好的体验。当下比较典型的分析方式是构建用户标签系统,从而精准地生成用户画像,提升用户体验。今天分享的主题是网易严选DMP标签系统建设实践。

      01 平台总览

      DMP作为网易严选的数据中台,向下连接数据,向上赋能业务,承担着非常重要的基石角色。

      DMP的数据来源主要包括三大部分:

      自营平台的app、小程序、pc端等各端的业务日志

      网易集团内部共建的一些基础数据

      京东、淘宝、抖音等第三方渠道店铺的数据

      通过收集、清洗,将以上数据形成数据资产沉淀下来。DMP在数据资产基础上形成了一套自己的标签产出、人群圈选和用户画像分析体系,从而为业务提供支撑,包括:智能化的选品、精准触达以及用户洞察等。总的来说,DMP系统就是构建以数据为核心的标签体系和画像体系,从而辅助业务做一系列精细化的运营。

      了解DMP系统,先从以下几个概念开始。

      标签:对于实体(用户、设备、手机号等)特征的描述,是一种面向业务的数据组织形式,比如使用:年龄段、地址、偏好类目等对用户实体进行刻画。

      人群圈选:通过条件组合从全体用户中圈选出一部分用户,具体就是指定一组用户标签和其对应的标签值,得到符合条件的用户人群。

      画像分析:对于人群圈选结果,查看该人群的行为情况、标签分布。例如查看【城市为杭州,且性别为女性】的用户在严选APP上的行为路径、消费模型等。

      严选标签系统对外主要提供两大核心能力:

      (1)标签查询:查询特定实体指定标签的能力,常用于基本信息的展示。

      (2)人群圈选:分为实时和离线圈选。圈选结果主要用于:

      分组判断:判读用户是否在指定的一个或多个分组,资源投放、触点营销等场景使用较多。

      结果集拉取:拉取指定的人群数据到业务方系统中,进行定制化开发。

      画像分析:分析特定人群的行为数据,消费模型等,进行更精细的运营。

      整体的业务流程如下:

      首先定义标签和人群圈选的规则;

      定义出描述业务的DSL之后,便可以将任务提交到Spark进行计算;

      计算完成之后,将计算结果存储到HIVE和DORIS;

      之后业务方便可以根据实际业务需求从HIVE或DORIS中查询使用数据。

      DMP平台整体分为计算存储层、调度层、服务层、和元数据管理四大模块。

      所有的标签元信息存储在源数据表中;调度层对业务的整个流程进行任务调度:数据处理、聚合转化为基础标签,基础标签和源表中的数据通过DSL规则转化为可用于数据查询的SQL语义,由调度层将任务调度到计算存储层的Spark进行计算,并将计算结果存储到Hive和Doris中。服务层由标签服务、实体分组服务、基础标签数据服务、画像分析服务四部分组成。

      标签的生命周期包含5个阶段:

      (1)标签需求:在此阶段,运营提出标签的需求和价值预期,产品评估需求合理性以及紧迫性。

      (2)排期生产:此阶段需要数据开发梳理数据,从ods到dwd到dm层整个链路,根据数据建立模型,同时数据开发需要做好质量监控。

      (3)人群圈选:标签生产出来之后进行应用,圈选出标签对应的人群。

      (4)精准营销:对3中圈选出来的人群进行精准化营销。

      (5)效果评估:最后产品、数据开发和运营对标签使用率、使用效果进行效果评估来决定后续对标签进行改进或降级。

      总的来说,就是以业务增长为目标,围绕标签的生命周期,投入合理的资源,最大化运营效果。

      02 标签生产

      接下来介绍标签生产的整个过程。

      标签的数据分层:

      最下层是ods层,包括用户登录日志、埋点记录日志、交易数据以及各种数据库的binlog数据。

      对ods层处理后的数据到达dwd明细层,包括用户登录表、用户活动表、订单信息表等。

      dwd层数据聚合后到dm层,标签全部基于dm层数据实现。

      目前我们从原始数据库到ods层数据产出已经完全自动化,从ods层到dwd层实现了部分自动化,从dwd到dm层有一部分自动化操作,但自动化程度还不高,这部分的自动化操作是我们接下来的工作重点。

      标签根据时效性分为:离线标签、近实时标签和实时标签。

      根据聚合粒度分为:聚合标签和明细标签。

      通过类别维度可将标签分为:账号属性标签、消费行为标签、活跃行为标签、用户偏好标签、资产信息标签等。

      直接将dm层的数据不太方便拿来用,原因在于:

      基础数据比较原始,抽象层次有所欠缺、使用相对繁琐。通过对基础数据进行与、或、非的组合,形成业务标签供业务方使用,可以降低运营的理解成本,降低使用难度。

      标签组合之后需要对标签进行具体业务场景应用,如人群圈选。配置如上图左侧所示,支持离线人群包和实时行为(需要分开配置)。

      配置完后,生成上图右侧所示的DSL规则,以json格式表达,对前端比较友好,也可以转成存储引擎的查询语句。

      标签有一部分实现了自动化。在人群圈选部分自动化程度比较高。比如分组刷新,每天定时刷新;高级计算,如分组与分组间的交/并/差集;数据清理,及时清理过期失效的实体集。

      03 标签存储

      下面介绍一下我们在标签存储方面的实践。

      严选DMP标签系统需要承载比较大的C端流量,对实时性要求也比较高。

      我们对存储的要求包括:

      支持高性能查询,以应对大规模C端流量

      支持SQL,便于应对数据分析场景

      支持数据更新机制

      可存储大数据量

      支持扩展函数,以便处理自定义数据结构

      和大数据生态结合紧密

      目前还没有一款存储能够完全满足要求。

      我们第一版的存储架构如下图所示:

      离线数据大部分存储在hive中,小部分存储在hbase(主要用于基础标签的查询)。实时数据一部分存储在hbase中用于基础标签的查询,部分双写到KUDU和ES中,用于实时分组圈选和数据查询。离线圈选的数据通过impala计算出来缓存在redis中。

      这一版本的缺点包括:

      存储引擎过多。

      双写有数据质量隐患,可能一方成功一方失败,导致数据不一致。

      项目复杂,可维护性较差。

      为了减少引擎和存储的使用量,提高项目可维护性,在版本一的基础上改进实现了版本二。

      存储架构版本二引入了ApacheDoris,离线数据主要存储在HIVE中,同时将基础标签导入到Doris,实时数据也存储在doris,基于Spark做HIVE加Doris的联合查询,并将计算出来的结果存储在redis中。经过此版改进后,实时离线引擎存储得到了统一,性能损失在可容忍范围内(Hbase的查询性能比doris好一些,能控制在10ms以内,doris目前是1.0版本,p99,查询性能能控制在20ms以内,p999,能控制在50ms以内);项目简化,降低了运维成本。

      在大数据领域,各种存储计算引擎有各自的适用场景,如下表所示:

      04 高性能查询

      分组存在性判断:判断用户是否在指定的一个分组或者多个分组。包括两大部分:第一部分为静态人群包,提前进行预计算,存入redis中(key为实体的id,value为结果集id),采用lua脚本进行批量判断,提升性能;第二部分为实时行为人群,需要从上下文、API和ApacheDoris中提取数据进行规则判断。性能提升方案包括,异步化查询、快速短路、查询语句优化、控制join表数量等。

      还有一个场景是人群分析:人群分析需要将人群包数据同多个表进行联合查询,分析行为路径。目前doris还不支持路径分析函数,因此我们开发了dorisUDF来支持此业务。doris的计算模型对自定义函数的开发还是很友好的,能够比较好地满足我们的性能需要。

      ApacheDoris在网易严选中已应用于点查、批量查询、路径分析、人群圈选等场景。在实践中具备以下优势:

      (1)在点查和少量表的联合查询性能QPS超过万级,RT99<50MS。

      (2)水平扩展能力很强,运维成本相对比较低。

      (3)离线数据和实时数据相统一,降低标签模型复杂度。

      不足之处在于大量小数据量的导入任务资源占用较多,性能还需要优化。

      05 未来规划

      (1)提升存储&计算性能

      HIVE和Spark逐渐全部转向ApacheDoris。

      (2)优化标签体系

      建立丰富准确的标签评价体系

      提升标签质量和产出速度

      提升标签覆盖率

      (3)更精准的运营

      建立丰富的用户分析模型

      从使用频次和用户价值两个方面提升用户洞察模型评价体系

      建立通用化画像分析能力,辅助运营智能化决策

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。