半导体跨界潮,谁在跟风,谁在下棋?Nikola,一个千亿造车独角兽破产了消息称谷歌将因违反反垄断规则而遭欧盟指控,恐被处以高额罚款透明美学再进化,Nothing Phone(3a)系列手机宣传物料曝光2025 年春运今日迎来最后一天,全国铁路已累计发送旅客 4.99 亿人次国内通信运营商首次:中国联通通过数字货币桥实现跨境支付微软 Outlook“保存邮件到 OneNote”功能 3 月谢幕,“发送到 OneNote”接棒全国首个:浙江率先布局低空经济“下乡”,目标到年底建成 200 个乡村无人机起降枢纽拨打客服电话强制等待 15 分钟,惠普欧洲试点遭强烈反对后取消OPPO一键问屏 / 全能搜基于阶跃星辰Step系列多模态模型打造京东&创维联合定制JD100 Mini电视发布 下单享免费送装一体服务我国成功发射中星 10R 卫星中科闻歌发布“智川”企业智能体平台1.0、“优雅”音视频大模型平台1.5,领先技术加速AI普惠落地这个周末,在最懂开发者的城市邂逅最懂开发者的算力平台DDN推出 Infinia 2.0对象存储 加速AI数据处理速度全部免费!百度文心智能体平台已全面接入DeepSeek模型灯塔云系统:开启劳务派遣管理4.0时代超2671万名消费者申请手机等数码产品购新补贴 用国补买手机上京东皇家马德里对阵赫罗纳:不乏进球与高水平竞技的足球现场OpenAI宣布面向多个国家推出AI代理 Operator
  • 首页 > 产经新闻频道 > 业界新闻

    2023年计算机视觉的现状:机遇与挑战并存

    2023年04月06日 17:53:05   来源:千家网

      自20世纪60年代首次进行图像识别实验以来,计算机视觉领域已经取得了长足的进步。

      计算机视觉技术正在广泛应用,从自动驾驶汽车到医疗保健再到安全系统。在2023年,随着深度学习、神经网络和图像处理的最新进展,计算机视觉的发展势头强劲。但也有面临重大挑战,包括道德考虑和更加多样化的必要性和代表性的数据集。在本文中,我们将探讨2023年计算机视觉的现状、未来的机遇以及为释放其全部潜力必须克服的挑战。

      计算机视觉的最新进展

      近年来,深度学习已成为计算机视觉的强大工具。深度学习算法使用人工神经网络模仿人脑处理信息的方式,已被用于在图像识别和分类方面取得突破。例如,在2012年,一种名为AlexNet的深度学习算法在ImageNet大规模视觉识别挑战赛中,取得了创纪录的15.3%的错误率,大大超过了此前的最好成绩。

      从那时起,深度学习不断改进,新的算法和架构不断突破可能的极限。例如,在2020年,Google的研究人员推出了一种名为EfficientNet的新型深度学习架构,该架构在一系列图像分类任务上取得了最先进的结果,同时使用的参数比以前的模型更少。此后,EfficientNet被广泛的企业和研究人员采用,突出了深度学习在计算机视觉中的力量。

      计算机视觉最新进展的另一个领域是图像处理。图像处理算法的进步使得从图像中提取更多信息成为可能,例如检测和跟踪实时视频流中的对象。例如,2018年,斯坦福大学的研究人员开发了一种名为YOLO的实时物体检测算法,该算法在一系列基准测试中取得了最先进的性能。自此后,YOLO被广泛应用于自动驾驶汽车和安全系统等领域。

      计算机视觉的机遇

      计算机视觉的最新进展为各行各业开辟了一系列新机遇。以下是一些例子:

      医疗保健:计算机视觉可用于广泛的医疗保健应用,例如根据医学图像诊断疾病、远程监控患者以及改善手术结果。例如,2018年,斯坦福大学的研究人员开发了一种深度学习算法,可以像人类皮肤科医生一样准确地诊断皮肤癌。

      零售:计算机视觉可用于零售业以改善购物体验,例如通过自动检测和识别产品,或通过跟踪客户行为进行个性化推荐。例如,Amazon Go商店使用计算机视觉来跟踪顾客在商店中走动,并自动为其购买的产品收费。

      安全:计算机视觉可用于安全系统以检测和跟踪入侵者,或根据面部特征识别个人。例如,中国政府开发了一个名为“天网”的全国监控系统,该系统使用面部识别技术来跟踪个人并监控其行为。

      计算机视觉面临的挑战

      虽然计算机视觉的机遇是巨大的,但该领域也面临着重大挑战。以下是一些例子:

      道德:计算机视觉可用于好的目的和坏的目的,如在侵犯隐私的监视系统中,或在使偏见永久化的面部识别系统中。研究人员和开发人员必须考虑工作的道德影响,并确保其系统旨在尊重个人权利和促进社会正义。

      数据偏差:计算机视觉算法的好坏取决于其所训练的数据。如果数据有偏差或不具代表性,算法将学习这些偏差并在其预测中延续。这可能会导致不公平和歧视性的结果,尤其是在面部识别等应用中,偏见会对边缘化社区造成不成比例的影响。为了克服这一挑战,研究人员和开发人员必须确保数据集多样化、具有代表性且没有偏见。

      对抗性攻击:计算机视觉算法也容易受到对抗性攻击,攻击者故意操纵图像或视频来欺骗算法。对抗性攻击可用于欺骗安全系统、错误地分类物体,甚至导致自动驾驶汽车撞车。为了应对这一挑战,研究人员正在开发可以检测和防御对抗性攻击的新算法和技术。

      硬件限制:计算机视觉算法的计算成本很高,需要大量的处理能力和内存。这会限制其在实际应用中的可扩展性和实用性。为了克服这一挑战,研究人员正在开发更高效的算法和硬件架构,例如专为深度学习设计的专用芯片。

      计算机视觉的未来是什么?

      根据Allied Market Research的数据,计算机视觉市场在过去几年中一直在多个行业扩展,预计到2023年收入将增长174亿美元,到2030年将增长411.1亿美元。

      随着深度学习、神经网络和图像处理技术的最新进展,计算机视觉在未来的发展前景十分强劲。计算机视觉正在广泛应用,从医疗保健到零售再到安全系统,并在未来拥有巨大的前景。然而,该领域也面临着重大挑战,包括道德考虑、数据偏差、对抗性攻击和硬件限制。为了释放计算机视觉的全部潜力,研究人员和开发人员必须继续应对这些挑战,并确保其系统旨在促进公平、透明和社会正义。

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。