突破叙事尺度 刻画极致人物 迷雾剧场《漂白》1月17日上线爱奇艺1月20日手机数码国补落地京东 超千万国补商品等你挑选超千万货品已备足 1月20日来京东购手机享国家补贴每件最高500元拥抱创新科技,探寻体育变革之路—— 第二届LALIGA EXTRATIME体育行业论坛在京成功举办斑马技术《2025全球消费者调查报告》:注重防损管理,增强顾客体验终端创企Nothing拟募资1亿美元 一加联合创始人创立恩智浦获欧洲投资银行 10 亿欧元贷款,用于在欧多国研发创新工作入手松下ZS99相机新品首选京东 售价2998元可先人一步入手1月20日打开京东搜索「1」 3C数码“疯狂星期一”爆款低至1元当代年轻人用上AI,从夸克开始消息称iPhone SE 4将有白色和黑色 预计3月份推出全球PC市场迎来温和复苏:2024年出货量增长1.3%,联想和苹果表现亮眼比亚迪已在韩国推出Atto 3 预计2月中旬开始交付发展新质生产力 赋能健康产品力 ——劲牌有限公司2024年度科技责任(成果)报告美光减产后 SK海力士也计划将上半年NAND闪存产量削减一成赵明离职信曝光:离开荣耀是人生中最艰难的决定消息称京东服饰换帅,阿里前高管担任负责人这年头,谁在互联网上学这么“硬核”的AI?开战2025,本地生活商家「另辟蹊径」年底Mini LED电视到底怎么选?认准这些新技术不踩雷!
  • 首页 > 云计算频道 > 大模型

    与Sora一样能生成视频、图像,还能一次解读100万数据!

    2024年02月27日 10:45:43   来源:站长之家

      大语言模型(LLM)在生成文本内容方面非常强,但在理解、生成视频、图像等方面略显不足。尤其是在Sora一夜爆红之后,让人们意识到未来主流模型一定是文本+音频+图像+视频的多模态生成、理解功能。

      因此,加州大学伯克利分校的研究人员开源了一种训练数据更多、理解能力更强的基础模型——大世界模型(Large World Model,简称“LWM”)。

      LWM是一种通用的多模态自回归模型,与前不久谷歌发布的Gemini1.5一样,一次性可精准解答100万tokens的视频、文本,例如,LWM可以正确回答1小时YouTube视频中包含500多个视频片段的问题。

      此外,LWM可以精准检索100万tokens文本中的内容,同时与Sora一样具备文本生成视频、图像的能力。整体性能非常强悍,目前在github获得超6000颗星,有纯文本、视频、图像等多个版本模型可使用。

      LWM模型介绍

      在传统的注意力机制中,例如,Transformer架构中使用的自注意力,模型需要计算序列中每个元素对于其他所有元素的注意力得分,这就会面临两大难题。

      1)内存需求上升:模型需要存储每一对元素间的注意力得分,会随着序列长度的增加而急剧增加内存需求。

      2)计算复杂度:当序列很长时,会导致巨大的算力负担。

      LWM的核心技术是通过Ring Attention(环形注意力)在长序列上进行扩展训练,并使用Books3数据集从32000扩展到100万标记,而无需消耗额外的内存、算力并降低计算复杂度。

      Ring Attention论文地址:https://arxiv.org/abs/2310.01889

      尽管Ring Attention减少了每个片段的直接交互范围,但仍然允许信息在序列中传递,保持了模型对长距离依赖的捕捉能力,减少了长序列的处理损失度。

      这也是LWM能处理高达100万tokens数据的原因之一。

      Ring Attention主要功能

      RingAttention是通过使用循环结构来扩展,注意力机制的上下文大小。传统的注意力机制在计算上下文相关性时,通常只关注序列中相对较近的位置。

      但在处理长序列时,远距离的上下文信息也可能对模型的理解和推理能力至关重要。RingAttention通过引入环形结构来解决这个难题。

      具体来说,使用了一种环形缓冲区来存储先前计算的注意力权重。模型可以在计算当前位置的注意力时,考虑到之前计算的位置的信息,从而无限扩展了上下文范围,主要功能模块如下。

      环状分组:该模块将输入序列划分为多个环,每个环中的位置与其他环中的位置之间进行相关性计算。通过这种划分方式,可以有效降低计算复杂度。

      环内注意力:在每个环内,该模块计算位置之间的相关性,并根据相关性的权重对位置进行加权。这样,每个位置都可以获得来自同一环的其他位置的信息。

      环间注意力:这个模块负责计算不同环之间的相关性。通过将每个环的表示与其他环的表示进行比较,计算它们之间的相关性,这种跨环的交互有助于在不同环之间传递信息。

      环间投影:在环间注意力之后,该模块将每个环的表示投影到一个共享的表示空间中,有助于进一步整合不同环之间的信息。

      通过这些关键模块的协同工作,Ring Attention实现了对长序列的高效处理和建模,并为训练大规模模型提供了高效方法。

      LWM训练流程与数据

      第一阶段是语言模型的预训练,主要扩展语言理解的上下文长度。LWM使用了Books3数据集, 从32,000tokens逐步扩展到100万tokens,同时针对长序列的聊天任务进行了微调。

      第二阶段是多模态的预训练,将视觉信息整合到语言模型中。LWM使用了大量包含图像和视频的公开数据集,例如,LAION-2B、COYO-700M、WebVid10M等。

      同时训练图像-文本、视频-文本等多种对齐格式。视频以每秒4帧的速度提取关键帧,特别针对32K、128K和1M tokens长度进行了优化训练。

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。