突破叙事尺度 刻画极致人物 迷雾剧场《漂白》1月17日上线爱奇艺1月20日手机数码国补落地京东 超千万国补商品等你挑选超千万货品已备足 1月20日来京东购手机享国家补贴每件最高500元拥抱创新科技,探寻体育变革之路—— 第二届LALIGA EXTRATIME体育行业论坛在京成功举办斑马技术《2025全球消费者调查报告》:注重防损管理,增强顾客体验终端创企Nothing拟募资1亿美元 一加联合创始人创立恩智浦获欧洲投资银行 10 亿欧元贷款,用于在欧多国研发创新工作入手松下ZS99相机新品首选京东 售价2998元可先人一步入手1月20日打开京东搜索「1」 3C数码“疯狂星期一”爆款低至1元当代年轻人用上AI,从夸克开始消息称iPhone SE 4将有白色和黑色 预计3月份推出全球PC市场迎来温和复苏:2024年出货量增长1.3%,联想和苹果表现亮眼比亚迪已在韩国推出Atto 3 预计2月中旬开始交付发展新质生产力 赋能健康产品力 ——劲牌有限公司2024年度科技责任(成果)报告美光减产后 SK海力士也计划将上半年NAND闪存产量削减一成赵明离职信曝光:离开荣耀是人生中最艰难的决定消息称京东服饰换帅,阿里前高管担任负责人这年头,谁在互联网上学这么“硬核”的AI?开战2025,本地生活商家「另辟蹊径」年底Mini LED电视到底怎么选?认准这些新技术不踩雷!
  • 首页 > 企业IT频道 > 人工智能

    简述机器学习加速器的五种类型

    2022年12月14日 11:42:35   来源:51CTO

      译者 | 布加迪

      过去十年是深度学习的时代。我们为从AlphaGo到DELL-E 2的一系列重大事件而激动不已。日常生活中出现了不计其数的由人工智能(AI)驱动的产品或服务,包括Alexa设备、广告推荐、仓库机器人和自动驾驶汽车等。

      近年来,深度学习模型的规模呈指数级增长。这不是什么新闻了:Wu Dao 2.0模型含有1.75万亿参数,在SageMaker训练平台的240个ml.p4d.24xlarge实例上训练GPT-3大约只需25天。

      但随着深度学习训练和部署的发展,它变得越来越具有挑战性。由于深度学习模型的发展,可扩展性和效率是训练和部署面临的两大挑战。

      本文将总结机器学习(ML)加速器的五大类型。

      了解AI工程中的ML生命周期

      在全面介绍ML加速器之前,不妨先看看ML生命周期。

      ML生命周期是数据和模型的生命周期。数据可谓是ML的根源,决定着模型的质量。生命周期中的每个方面都有机会加速。

      MLOps可以使ML模型部署的过程实现自动化。但由于操作性质,它局限于AI工作流的横向过程,无法从根本上改善训练和部署。

      AI工程远超MLOps的范畴,它可以整体(横向和纵向)设计机器学习工作流的过程以及训练和部署的架构。此外,它可以通过整个ML生命周期的有效编排来加速部署和训练。

      基于整体式ML生命周期和AI工程,有五种主要类型的ML加速器(或加速方面):硬件加速器、AI计算平台、AI框架、ML编译器和云服务。先看下面的关系图。

      图1. 训练与部署加速器的关系

      我们可以看到,硬件加速器和AI框架是加速的主流。但最近,ML编译器、AI计算平台和ML云服务已变得越来越重要。

      下面逐一介绍。

      1. AI框架

      在谈到加速ML训练和部署时,选择合适的AI框架无法回避。遗憾的是,不存在一应俱全的完美或最佳AI框架。广泛用于研究和生产的三种AI框架是TensorFlow、PyTorch和JAX。它们在不同的方面各有千秋,比如易用性、产品成熟度和可扩展性。

      TensorFlow:TensorFlow是旗舰AI框架。TensorFlow一开始就主导深度学习开源社区。TensorFlow Serving是一个定义完备的成熟平台。对于互联网和物联网来说,TensorFlow.js和TensorFlow Lite也已成熟。

      但由于深度学习早期探索的局限性,TensorFlow 1.x旨在以一种非Python的方式构建静态图。这成为使用“eager”模式进行即时评估的障碍,这种模式让PyTorch可以在研究领域迅速提升。TensorFlow 2.x试图迎头赶上,但遗憾的是,从TensorFlow 1.x升级到2.x很麻烦。

      TensorFlow还引入了Keras,以便总体上更易使用,另引入了优化编译器的XLA(加速线性代数),以加快底层速度。

      PyTorch:凭借其eager模式和类似Python的方法,PyTorch是如今深度学习界的主力军,用于从研究到生产的各个领域。除了TorchServe外,PyTorch还与跟框架无关的平台(比如Kubeflow)集成。此外,PyTorch的人气与Hugging Face的Transformers库大获成功密不可分。

      JAX:谷歌推出了JAX,基于设备加速的NumPy和JIT。正如PyTorch几年前所做的那样,它是一种更原生的深度学习框架,在研究领域迅速受到追捧。但它还不是谷歌声称的“官方”谷歌产品。

      2. 硬件加速器

      毫无疑问,英伟达的GPU 可以加速深度学习训练,不过它最初是为视频卡设计的。

      通用GPU出现后,用于神经网络训练的图形卡人气爆棚。这些通用GPU可以执行任意代码,不仅仅是渲染子例程。英伟达的CUDA编程语言提供了一种用类似C的语言编写任意代码的方法。通用GPU有相对方便的编程模型、大规模并行机制和高内存带宽,现在为神经网络编程提供了一种理想的平台。

      如今,英伟达支持从桌面到移动、工作站、移动工作站、游戏机和数据中心的一系列GPU。

      随着英伟达GPU大获成功,一路走来不乏后继者,比如AMD的GPU和谷歌的TPU ASIC等。

      3. AI计算平台

      如前所述,ML训练和部署的速度很大程度上依赖硬件(比如GPU和TPU)。这些驱动平台(即AI计算平台)对性能至关重要。有两个众所周知的AI计算平台:CUDA和OpenCL。

      CUDA:CUDA(计算统一设备架构)是英伟达于2007年发布的并行编程范式。它是为图形处理器和GPU的众多通用应用设计的。CUDA是专有API,仅支持英伟达的Tesla架构GPU。CUDA支持的显卡包括GeForce 8系列、Tesla和Quadro。

      OpenCL:OpenCL(开放计算语言)最初由苹果公司开发,现由Khronos团队维护,用于异构计算,包括CPU、GPU、DSP及其他类型的处理器。这种可移植语言的适应性足够强,可以让每个硬件平台实现高性能,包括英伟达的GPU。

      英伟达现在符合OpenCL 3.0,可用于R465及更高版本的驱动程序。使用OpenCL API,人们可以在GPU上启动使用C编程语言的有限子集编写的计算内核。

      4. ML编译器

      ML编译器在加速训练和部署方面起着至关重要的作用。ML编译器可显著提高大规模模型部署的效率。有很多流行的编译器,比如Apache TVM、LLVM、谷歌MLIR、TensorFlow XLA、Meta Glow、PyTorch nvFuser和Intel PlaidML。

      5. ML云服务

      ML云平台和服务在云端管理ML平台。它们可以通过几种方式来优化,以提高效率。

      以Amazon SageMaker为例。这是一种领先的ML云平台服务。SageMaker为ML生命周期提供了广泛的功能特性:从准备、构建、训练/调优到部署/管理,不一而足。

      它优化了许多方面以提高训练和部署效率,比如GPU上的多模型端点、使用异构集群的经济高效的训练,以及适合基于CPU的ML推理的专有Graviton处理器。

      结语

      随着深度学习训练和部署规模不断扩大,挑战性也越来越大。提高深度学习训练和部署的效率很复杂。基于ML生命周期,有五个方面可以加速ML训练和部署:AI框架、硬件加速器、计算平台、ML编译器和云服务。AI工程可以将所有这些协调起来,利用工程原理全面提高效率。

      原文标题:5 Types of ML Accelerators,作者:Luhui Hu

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。