诺基亚与微软再合作,为 Azure 数据中心供货延长五年天岳先进发布业界首款 300mm(12 英寸)N 型碳化硅衬底三星介绍内部安全团队 Project Infinity 攻防演练项目,高效修复 Galaxy 手机平板漏洞上海市将推进低空飞行服务管理能力建设,2027 年底前累计划设相应航线不少于 400 条岁末,海尔给您备好一套“小红花”为什么说Q10K Pro是今年最值得入手的电视?看完这几点就明白了!“小墨方·大不凡”!Brother“小墨方”系列彩喷一体机全新上市黄仁勋:AI智能需求强劲,“物理定律”限制英伟达芯片增长诺基亚与微软再合作,为Azure数据中心供货延长五年国家数据局:到2029年基本建成国家数据基础设施主体结构中国已发展成为全球最大的互联网市场,拥有全球最多的网民和移动互联网用户中国铁塔:计划按照10:1的比例合股美国FCC正式划定5.9GHz频段用于C-V2X技术在AI领域奋起直追!苹果要对Siri大革新 2026年正式发布日本机构公布量子专利榜单:本源量子、国盾量子位居全球第1中国联通:拟向华为、中兴展开5G网络设备竞争性谈判采购京东“先人一步”预约OPPO Reno13系列 1元锁定腾讯视频VIP会员季卡万兆光网中国行:以应用为牵引,上海万兆加速启航消息称芯片制造商铠侠12月18日上市,将通过IPO筹资总计700亿日元谷歌安卓16打造端侧AI智能体:Gemini将成管家,代用户掌控应用交互
  • 首页 > 云计算频道 > 大模型

    腾讯汤道生:产业场景是大模型最佳练兵场

    2023年06月20日 09:13:59   来源:中文科技资讯

      6月19日,腾讯云在国家科技传播中心召开行业大模型及智能应用技术峰会,首次公布腾讯云行业大模型研发进展,依托腾讯云TI平台打造行业大模型精选商店,为客户提供MaaS(Model-as-a-Service)一站式服务,助力客户构建专属大模型及智能应用。

      峰会上,腾讯集团高级执行副总裁、云与智慧产业事业群CEO汤道生发表《模型扎根产业,共建智能生态》的主题演讲,分别从模型、数据、应用与算力四个角度分享了对大语言模型在产业落地的思考。

      腾讯集团高级执行副总裁、云与智慧产业事业群CEO 汤道生

      首先,就模型而言,比起通用大模型,企业更需要针对具体行业的大模型,并结合企业自身的数据进行训练和精调,以打造出更实用的智能服务。企业对提供的专业服务要求高且容错性低,因此使用的大模型必须具备可控、可追溯和可修正的特点,并经过反复充分的测试。

      其次是数据的重要性。数据是大模型的原材料,针对具体场景,数据的覆盖和质量至关重要。在模型的开发过程中,需要关注敏感数据的保护和安全合规,并有效管理大量的数据和标签,不断进行测试和模型的迭代。腾讯云也推出基于TI平台的行业大模型精调解决方案,帮助模型开发者和算法工程师高效率、高品质、低成本地处理数据,创建和使用大模型。

      在应用方面,腾讯自身也应用行业大模型,优化自身企业级应用,为用户提高工作效率。例如,通过基于行业模型的智能小助手,腾讯会议可以协助用户进行日程安排、会管、会控等操作,并自动生成智能总结摘要,提升会议的效率。腾讯企点智能客服和AI代码助手等应用也通过行业模型的训练和精调,提供更精准、详细的回答和高效的编程辅助。

      最后是算力的支持。算力是模型持续运转的基础,高性能、高弹性和高稳定的算力对于大模型的训练和使用至关重要。腾讯云也提供新一代高性能计算集群,为客户提供稳定计算、高速网络与专业运维。同时,推出面向AI运算的向量数据库,支撑对图像、音频和文本等非结构化数据的高效处理,数据接入AI的效率,也比传统方案提升10倍。

      汤道生表示,大模型只是开端,AI与产业的融合,将绽放出更有创造力的未来。生态共建是AI发展的有效路径,腾讯将坚持生态开放,为企业提供高质量模型服务,同时支持客户多模型训练任务,加速大模型在产业场景的创新探索。

      以下为演讲全文:

      各位嘉宾、各位媒体朋友,大家好!

      欢迎参加今天的技术峰会,非常高兴有机会和大家一起探讨产业智能化升级的机遇;也非常期待与客户共建,以企业场景与行业数据为基础的行业大模型。

      过去半年,大家都为大语言模型的发展感到兴奋,不少人已经试遍各个通用大模型的聊天机器人,但大部分互联网用户可能还只是有所听闻。市面上的通用大模型在一些聊天问答上,确实有让人惊艳的表现。基于大量知识与公开信息的训练,通过推测下一个字的语言生成,它能回答不同领域的提问,生成人性化的回复,连贯地对话。

      同时,许多企业管理者也在思考,如何把大模型技术应用到自己企业场景中。比如在客服与营销环节,为业务经营带来更多降本增效。但在具体的企业场景中,通用大模型可能还不能满足企业很多需求,比如,它不一定懂行业的专业术语,不了解企业内部的独特情况,回答会比较虚、比较笼统,偶尔还会一本正经地胡说八道,信息也不够及时。

      大家既期待着,能力越来越强大的通用大模型,同时也在思考,如何在使用大模型时,保护企业数据的产权与隐私?如何降低大模型的使用成本?这些都是企业需要考虑的现实问题。

      借今天这个机会,我想讲讲,我对大语言模型在产业落地的思考,分别从模型、数据、应用与算力四个角度来探讨。

      首先是模型。虽然大家对通用大模型期待很高,但它不一定是满足行业场景需求的最优解。

      目前,通用大模型一般都是基于广泛的公开文献与网络信息来训练的,网上的信息可能有错误、有谣言、有偏见,许多专业知识与行业数据积累不足,导致模型的行业针对性与精准度不够,数据“噪音”过大。但是,在很多产业场景中,用户对企业提供的专业服务要求高,容错性低。企业一旦提供了错误信息,可能引起巨大的法律责任或公关危机。因此,企业使用的大模型必须可控、可追溯、可修正,而且必须反复与充分测试才能上线。

      我们认为,客户更需要有行业针对性的行业大模型,再加上企业自己的数据做训练或精调,才能打造出实用性高的智能服务。企业所需要的是在实际场景中真正解决了某个问题,而不是在100个场景中解决了70%-80%的问题。

      另外,训练数据越多,模型越大,训练与推理的成本也越高。实际上,大部分的企业场景,可能也不需要万能的通用AI来满足需要。因此,如何在合理成本下,选择合适的模型,是企业客户所需要思考与决策的。

      今天,我们也正式公布腾讯云MaaS服务解决方案,基于TI平台打造行业精选模型商店,覆盖金融、文旅、政务、传媒、教育等10大行业,提供超过50个解决方案。在这些能力模型基础上,客户只需要加入自己独有的场景数据,就可以快速生成自己的“专属模型”。

      比如,我们和国内的头部在线旅游公司,基于“文旅大模型”,打造了机器人客服,可以自动判断用户意图,并自动调用相应的API,高质量完成用户咨询及服务。

      如果一个用户问,“节假日有哪些比较经济的旅游景点推荐?”基于通用大模型的客服机器人,只能给出一些简单的景点介绍和路线规划。但是,当我们用大量有针对性的行业数据来做模型精调之后,客服机器人的回答就变得更加细致,能够规划出每天的交通、景点安排,给出经济实惠的定制化推荐方案。

      接下来谈谈数据。数据是大模型的原材料,针对具体场景,相关数据的覆盖与质量都至关重要,标注数据的管理也是模型迭代中的重要工作。

      模型最终要在真实场景落地,要达到理想的服务效果,往往需要把企业自身的数据也用起来。在模型研发过程中,既要关注敏感数据的保护与安全合规,也需要管理好大量的数据与标签,不断测试与迭代模型。

      因此,我们也推出基于腾讯云TI平台的行业大模型精调解决方案。帮助模型开发者与算法工程师,一站式解决数据的处理问题,高效率、高品质、低成本地创建和使用大模型。我们也可以通过TI平台以及模型的私有化部署、权限管控和数据加密等方式,让企业用户在打造模型与使用模型时都更放心。

      最近,我们携手中央电视台打造“央视人工智能开放平台”。其间也面临数据量庞大、形态复杂的问题,导致传统的数据标签体系都无法达标。我们重新构建了一套传媒专属的数据标签体系,同时也研发了创新的“标签权重引擎”,让数据标签颗粒度更细,并按照核心度排序。在这样的数据标签体系支撑下,视频编辑用自然语言就能实现跨模态检索。比如,输入“居民消费力”,系统可自动提供商场、超市相关素材,再搭配智能剪辑,就能快速生成视频。

      接着讲讲应用。腾讯自身的企业级应用,已经率先应用了行业大模型,针对不同应用场景提供更智能的服务,为用户提高工作效率。

      例如,腾讯会议即将推出覆盖会议全流程场景的智能小助手。通过简单自然的会议指令,协助用户进行日程安排、会管、会控等一系列操作。会后可以自动生成智能总结摘要,还能基于智能录制的能力,帮助用户高效回顾,提升用户开会和信息流转效率。

      新一代的腾讯企点智能客服,基于行业模型,结合客户业务需求进行训练与精调,客服机器人可以提供更精准、更详细的回答,甚至调用业务系统来提供实时数据。对比上一代智能客服的机械回答,用户体验有很大的提升。

      在企点分析平台上,销售人员只要问一句“哪个产品卖的最好”,就可以实现准确的商业分析,不需要花费大量的时间,学习复杂的软件、制作看板。

      借助腾讯云新一代AI代码助手,程序员也可以快速、高品质地完成代码的补充、纠错和解释,覆盖编码、评审、测试等不同场景。

      最后讲讲算力。算力是模型持续运转的基础,高性能、高弹性和高稳定的算力需要借助专业的云服务。

      在大模型的训练和使用过程中,需要大量异构算力的支持,对网络速度与稳定性要求也很高,加上GPU服务器比一般服务器稳定性更低一些,服务器的运维、问题的排查更频繁,整体运维的难度与工作量会高很多。

      例如,在训练集群中,一旦网络有波动,训练的速度就会受到很大的影响;只要一台服务器过热宕机,整个集群都可能要停下来,然后训练任务要重启,这些事件会使得训练时间大大增加,投入在大模型的成本也会飙升。因此,腾讯云所提供的稳定计算、高速网络与专业运维,可以为算法工程师大大减轻设备运维的压力,让他们把精力放在模型的构建与算法的优化上。

      腾讯云也打造了面向模型训练的新一代HCC(High-Performance Computing Cluster)高性能计算集群,搭载最新次代GPU,结合多层加速的高性能存储系统,加上高带宽、低延迟的网络传输,整体性能比过去提升了3倍,获得了很多客户的高度认可,几家AI独角兽都与我们展开了合作。

      在计算集群的“硬实力”之外,今天,我们也会推出更适合AI运算的“软能力”——向量数据库,它能更高效地处理图像、音频和文本等非结构化数据,支持单索引10亿级规模,比单机插件式检索规模提升10倍,数据接入AI的效率,也比传统方案提升10倍。

      回顾过去,人工智能的发展是结合开放数据的积累、算法的创新与算力的突破共同推动的;也是全球科技企业、高校与研究机构共同努力,通过代码的开源与研究成果的分享,开放共建的成果。

      腾讯云也将在大模型的产业应用上,坚持生态开放,支持多模型的选择,提供训练与推理的算力,满足不同行业、不同场景的多样化需求。

      今天,我们再一次站在数字科技革命的奇点上,大模型只是开端,AI与产业的融合,将绽放出更有创造力的未来。在这个过程中,腾讯愿意贡献自己的能力,与行业伙伴携手,用智能照亮行业,让AI普惠生活。

      文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

    [No. X072]
    分享到微信

    即时

    新闻

    明火炊具市场:三季度健康属性贯穿全类目

    奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。

    企业IT

    重庆创新公积金应用,“区块链+政务服务”显成效

    “以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。

    3C消费

    华硕ProArt创艺27 Pro PA279CRV显示器,高能实力,创

    华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。

    研究

    中国信通院罗松:深度解读《工业互联网标识解析体系

    9月14日,2024全球工业互联网大会——工业互联网标识解析专题论坛在沈阳成功举办。